面向世界科技前沿,面向国家重大需求,面向国民经济主战场,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 >  > 

财富彩票-官网

時間:2022-08-15 來源:本站 點擊:258次
【字体:

双语热点:2022年七大前沿科技:量子模拟和靶向基因医疗******

日前《自然》杂志最新列举2022年七项重要的科学技术,它们可能会在未来一年对科学领域产生重大影响。

Seven technologies to watch in 2022

From gene editing to protein-structure determination to quantum computing, here are seven technologies that are likely to have an impact on science in the year ahead.

从基因编辑到蛋白质结构确定再到量子计算,有七项重要的科学技术可能在未来一年产生重大影响。

Fully finished genomes

完整版基因组

Roughly one-tenth of the human genome remained uncharted when genomics researchers Karen Miga at the University of California, Santa Cruz, and Adam Phillippy at the National Human Genome Research Institute in Bethesda, Maryland, launched the Telomere-to-Telomere (T2T) consortium in 2019. Now, that number has dropped to zero. In a preprint published in May last year, the consortium reported the first end-to-end sequence of the human genome, adding nearly 200 million new base pairs to the widely used human consensus genome sequence known as GRCh38, and writing the final chapter of the Human Genome Project.

2019年,美国加州圣克鲁兹分校基因组学研究员凯伦·米加(Karen Miga)和马里兰州贝塞斯达国家人类基因组研究所研究员亚当·菲利普(Adam Phillippy)启动了“端粒至端粒(T2T)”的联合研究项目,当时大约全球十分之一的人类基因组仍未完成测序,然而,现在该数据已降至零。2021年5月,该联合研究项目声称发现第一个端粒至端粒的人类基因组序列,使用人类共识基因组序列图谱GRCh38增加了近2亿新碱基对,并为人类基因组计划写上了最后一章。

First released in 2013, GRCh38 has been a valuable tool — a scaffold on which to map sequencing reads. But it’s riddled with holes. This is largely because the widely used sequencing technology developed by Illumina, in San Diego, California, produces reads that are accurate, but short. They are not long enough to unambiguously map highly repetitive genomic sequences, including the telomeres that cap chromosome ends and the centromeres that coordinate the partitioning of newly replicated DNA during cell division.

最早发布于2013年的GRCh38基因组序列图谱是一个具有价值的研究工具,它是绘制基因序列读数的“脚手架”,但它也存在许多漏洞,其主要问题在于基因序列读数虽然精确,但过于简短,无法明确绘制高度重复的基因组序列,包括:覆盖染色体末端的端粒,细胞分裂期间协调新复制DNA分裂的着丝粒(centromeres)。

Long-read sequencing technologies proved to be the game-changer. Developed by Pacific Biosciences in Menlo Park, California, and Oxford Nanopore Technologies (ONT) in Oxford, UK, these technologies can sequence tens or even hundreds of thousands of bases in a single read, but — at least at the outset — not without errors. By the time the T2T team reconstructed their first individual chromosomes — X and 8 — in 2020, however, Pacific Biosciences’ sequencing had advanced to the extent that T2T scientists could detect tiny variations in long stretches of repeated sequences. These subtle ‘fingerprints’ made long repetitive chromosome segments tractable, and the rest of the genome quickly fell into line. The ONT platform also captures many modifications to DNA that modulate gene expression, and T2T was able to map these ‘epigenetic tags’ genome-wide as well.

长读测序技术被证明是改变游戏规则的技术,该技术是美国太平洋生物科学公司和英国牛津纳米孔技术公司共同开发的,它能在一次性基因序列读取中,对数万至数十亿个碱基对进行排序,但至少在测序初期,并不是没有错误。时值2020年,T2T项目研究人员重建了他们的第2、3条单独染色体——X和8,然而,太平洋生物科学公司的测序工作已取得重大进展,T2T科学家能检测到长时间重复序列的微小变化,这些微妙的“指纹”使长而重复的染色体片段变得更易处理,基因组剩余部分则很快排列起来,牛津纳米孔技术公司还捕获了许多调节基因表达的DNA修饰,同时,T2T基因测序能在基因组范围内绘制“表观遗传标记”。

The genome T2T solved was from a cell line that contains two identical sets of chromosomes. Normal diploid human genomes contain two versions of each chromosome, and researchers are now working on ‘phasing’ strategies that can confidently assign each sequence to the appropriate chromosome copy. “We’re already getting some pretty phenomenal phased assemblies,” says Miga.

已测序的T2T基因组源自包含两组相同染色体的细胞株,正常的二倍体人类基因组的每个染色体有两个版本,目前研究人员正在研究“阶段策略”,能够自信地将每个序列分配给合适的染色体副本。

This diploid assembly work is being conducted in collaboration with T2T’s partner organization, the Human Pangenome Reference Consortium, which aspires to produce a more representative genome map, based on hundreds of donors from around the world. “We’re aiming to capture an average of 97% of human allelic diversity,” says Erich Jarvis, one of the consortium’s lead investigators and a geneticist at the Rockefeller University in New York City. As chair of the Vertebrate Genomes Project, Jarvis also hopes to leverage these complete genome assembly capabilities to generate full sequences for every vertebrate species on Earth. “I think within the next 10 years, we’re going to be doing telomere-to-telomere genomes routinely,” he says.

T2T项目首席研究员之一、纽约洛克菲勒大学遗传学家埃里希·贾维斯(Erich Jarvis)说:“我们的目标是掌握平均97%的人类等位基因多样性,我认为未来10年之内,我们能将端粒至端粒基因组测序作为常规操作,同时,我们希望利用完整的基因组装配能力提供地球每种脊椎动物的完整基因组序列。”

Protein structure solutions

解析蛋白质结构

Structure dictates function. But it can be hard to measure. Major experimental and computational advances in the past two years have given researchers complementary tools for determining protein structures with unprecedented speed and resolution.

结构决定功能。但研究人员很难衡量。在过去两年时间里,科学实验和计算领域取得的进步,为研究人员以前所未有的速度和分辨率解析蛋白质结构。

The AlphaFold2 structure-prediction algorithm, developed by Alphabet subsidiary DeepMind in London, relies on ‘deep learning’ strategies to extrapolate the shape of a folded protein from its amino acid sequence. Since its public release last July, AlphaFold2 has been applied to proteomes, to determine the structures of all the proteins expressed in humans and in 20 model organisms, as well as nearly 440,000 proteins in the Swiss-Prot database, greatly increasing the number of proteins for which high-confidence modelling data are available.

由DeepMind子公司Alphabet开发的AlphaFold2结构预测算法基于“深度学习”策略,能推算出氨基酸序列折叠蛋白质的结构。该算法自2021年7月发布以来,已被应用于蛋白质组学,用于确定人类和20个模型生物中表达的所有蛋白质结构,以及Swiss-Prot数据库中近44万个蛋白质结构,大幅增加了高可信度建模数据的蛋白质数量。

In parallel, improvements in cryogenic-electron microscopy (cryo-EM) are enabling researchers to experimentally solve even the most challenging proteins and complexes. Cryo-EM scans flash-frozen molecules with an electron beam, generating images of the proteins in multiple orientations that can then be computationally reassembled into a 3D structure. In 2020, improvements in cryo-EM hardware and software enabled two teams to generate structures with a resolution of less than 1.5 ångströms, capturing the position of individual atoms. “Prior to this, we bandied about the term ‘atomic resolution’ with wild abandon, but it’s only been near-atomic,” says Bridget Carragher, co-director of the New York Structural Biology Center’s Simons Electron Microscopy Center in New York City. “This truly is atomic.” And, although both teams used an especially well-studied model protein called apoferritin, Carragher says, these studies suggest that near-atomic resolution is feasible for other, more difficult targets as well.

与此同时,低温电子显微镜的技术改进使研究人员能以实验方法解决最具挑战性的蛋白质和复合物,低温电子显微镜采用电子束扫描快速冻结的分子,生成多个方向的蛋白质图像,然后可以通过计算重新组装成一个蛋白质3D结构。2020年,低温电子显微镜硬件和软件的改进使研究团队能够生成分辨率小于1.5埃的水平解析蛋白质结构,捕捉到单个原子的位置。纽约结构生物学中心西蒙斯电子显微镜中心副主任布里奇特·卡拉格(Bridget Carragher)说:“此前我们曾深入讨论‘原子分辨率’这个术语,但它仅是接近原子,目前我们实验证实获得原子等级清晰度解析蛋白质结构是可行的。”

There is also considerable excitement around a related method, cryo-electron tomography (cryo-ET), which captures naturalistic protein behaviour in thin sections of frozen cells. But interpretation of these crowded, complicated images is challenging, and Carragher thinks computational advances from the machine-learning world will be essential. “How else are we going to solve these almost intractable problems?” she asks.

还有一种相关方法,即低温电子断层扫描(cryo-ET),它可以捕捉冷冻细胞薄片中自然蛋白质特征,但利用该技术解析复杂而拥挤的图像仍存在困难。卡拉格说:“采用机器学习世界的先进算法是必不可少的,相信未来我们能解决棘手的科学难题。”

Quantum simulation

量子模拟

Atoms are, well, atomic in size. But under the right conditions, they can be coaxed into a highly-excited, super-sized state with diameters on the order of one micrometre or more. By performing this excitation on carefully positioned arrays of hundreds of atoms in a controlled fashion, physicists have demonstrated that they can solve challenging physics problems that push conventional computers to their limits.

原子在特定条件下,能被诱导至一个高度激发状态,直径达到1微米或者更大。目前物理学家现已证实,通过对数百个原子阵列进行这种可控激发,可以解决一些具有挑战性的物理问题,实现传统计算机“极限升级”。

Quantum computers manage data in the form of qubits. Coupled together using the quantum physics phenomenon called entanglement, qubits can influence each other at a distance. These qubits can drastically increase the computing power that can be achieved with a given allotment of qubits relative to an equivalent number of bits in a classical computer.

量子计算机以量子位的形式管理数据,利用“量子纠缠”物理现象进行数据耦合,量子位可以在一定距离内相互影响。相对于经典计算机,这些量子位可大幅提高计算能力,而这可以通过给定的量子位分配来实现。

Several groups have successfully used individual ions as qubits, but their electrical charges make them challenging to assemble at high density. Physicists including Antoine Browaeys at the French national research agency CNRS in Paris and Mikhail Lukin at Harvard University in Cambridge, Massachusetts, are exploring an alternative approach. The teams use optical tweezers to precisely position uncharged atoms in tightly packed 2D and 3D arrays, then apply lasers to excite these particles into large-diameter ‘Rydberg atoms’ that become entangled with their neighbours. “Rydberg atom systems are individually controllable, and their interactions can be turned on and off,” explains physicist Jaewook Ahn at the Korea Advanced Institute of Science and Technology in Daejeon, South Korea. This in turn confers programmability.

目前,已有几个研究团队成功利用单个离子作为离子位,但这些离子的电荷很难在高密度下组装,物理学家正在探索另一种方法,其中包括法国国家科学研究中心的安东尼·布罗维(Antoine browwaeys)和美国哈佛大学的米哈伊尔·卢金(Mikhail Lukin),他们使用光学镊子精确地将不带电原子定位在紧密排列的2D和3D阵列中,然后应用激光将这些粒子成为大直径的“里德堡原子(Rydberg atoms)”,使其与它们邻近粒子纠缠在一起。韩国高级科学技术研究所物理学家Jaewook Ahn解释说:“里德堡原子系统是独立可控的,它们的相互作用可以打开和关闭,反之赋予了可编程性。”

This approach has gained considerable momentum in the span of just a few years, with technological advances that have improved the stability and performance of Rydberg atom arrays, as well as rapid scaling from a few dozen qubits to several hundred.

量子模拟技术在短短几年时间里就获得了重大突破进展,技术进步提高了里德堡原子阵列的稳定性和性能,以及从几十个量子位快速扩展至几百个。

Pioneers in the field have founded companies that are developing Rydberg atom array-based systems for laboratory use, and Browaeys estimates that such quantum simulators could be commercially available in a year or two. But this work could also pave the way towards quantum computers that can be applied more generally, including in economics, logistics and encryption.

量子模拟领域的先驱者已成立了公司,正在开发实验室使用的里德堡原子阵列系统,布罗维估计这种先进量子模拟器可以在一两年内投入商业应用,但这项工作也可能为量子计算机的更广泛应用铺平道路,包括:经济学、物流和数字加密领域等。

Precise genome manipulation

精准基因操控

For all its genome-editing prowess, CRISPR–Cas9 technology is better suited to gene inactivation than repair. That’s because although targeting the Cas9 enzyme to a genomic sequence is relatively precise, the cell’s repair of the resulting double-stranded cut is not. Mediated by a process called non-homologous end-joining, CRISPR–Cas9 repairs are often muddied by small insertions or deletions.

尽管CRISPR–Cas9技术拥有强大的基因组编辑能力,但该技术更容易基因失活,而不是达到基因修复,因为尽管针对Cas9酶的基因组序列相对精确,但细胞对该技术产生的双链切割修复却并不精确,CRISPR–Cas9修复通过一种称为“非同源端连接”的过程进行,通常会被微小的基因插入或者删除所混淆。

Most genetic diseases require gene correction rather than disruption, notes David Liu, a chemical biologist at Harvard University in Cambridge. Liu and his team have developed two promising approaches to do just that. The first, called base editing, couples a catalytically impaired form of Cas9 to an enzyme that aids chemical conversion of one nucleotide to another — for example, cytosine to thymine or adenine to guanine. But only certain base-to-base changes are currently accessible using this method. Prime editing, the team’s newer development, links Cas9 to a type of enzyme known as reverse transcriptase and uses a guide RNA that is modified to include the desired edit to the genomic sequence. Through a multistage biochemical process, these components copy the guide RNA into DNA that ultimately replaces the targeted genome sequence. Importantly, both base and prime editing cut only a single DNA strand, a safer and less disruptive process for cells.

美国哈佛大学化学生物学家大卫·刘指出,大多数遗传疾病需要的是基因修正,而不是基因破坏。目前他和研究同事现已开发两种颇有希望的基因操控方法,第一种叫做碱基编辑(base editing),将一种催化受损Cas9与一种酶结合,该酶可以帮助一种核苷酸转化为另一种核苷酸,例如:胞嘧啶转化为胸腺嘧啶,腺嘌呤转化为鸟嘌呤,但目前该方法仅对特定碱基对有效;第二种叫做精准编辑(Prime editing),是该团队最新的研发成果,将Cas9与逆转录酶连接起来,并引导DNA将所需编辑内容精准插入基因组序列。通过一个多阶段的生化过程,这些成分将引导RNA复制成DNA,最终取代目标基因组序列。重要的是,碱基编辑和精准编辑都仅剪切一条DNA链,这对细胞而言是一个更安全、破坏性更小的过程。

First described in 2016, base editing is already en route to the clinic: Beam Therapeutics, founded by Liu and also based in Cambridge, got the nod in November from the US Food and Drug Administration to trial this approach in humans for the first time, with the goal of repairing the gene that causes sickle-cell disease.

碱基编辑技术首次公布于2016年,现已投入临床应用,由大卫·刘创建的Beam Therapeutics公司已于11月获美国食品药物管理局批准,首次应用于人类镰状细胞病基因修复。

Prime editing is not as far along, but improved iterations continue to emerge, and the method’s promise is clear. Hyongbum Henry Kim, a genome-editing specialist at Yonsei University College of Medicine in Seoul, and his team have shown that they can achieve up to 16% efficiency using prime editing to correct retinal gene mutations in mice.

相比之下,精准编辑仍是一项新技术,但改进的迭代技术不断出现,该技术的应用前景也非常明确。韩国首尔延世大学医学院基因组编辑专家Hyongbum Henry Kim现已证实,使用精准编辑技术来纠正老鼠视网膜基因突变,可达到16%的治愈率。

“If we used recently reported, more advanced versions, the efficiencies would be improved even more,” he says,“In some cases, it’s known that if you can replace a gene at a 10% or even a 1% level, you can rescue the disease.”

他说:“如果我们使用最近报道的更先进技术,治疗效率将获得大幅提高,在某些情况下,如果能以10%,甚至以1%的基因进行替换,就可以治愈该疾病。”

Targeted genetic therapies

靶向基因治疗

Nucleic acid-based medicines might be making an impact in the clinic, but they are still largely limited in terms of the tissues in which they can be applied. Most therapies require either local administration or ex vivo manipulation of cells that are harvested from and then transplanted back into a patient. One prominent exception is the liver, which filters the bloodstream and is proving to be a robust target for selective drug delivery. In this instance, intravenous — or even subcutaneous — administration can get the job done.

基于核酸的药物可能会对临床治疗产生某些影响,但它们在可应用的组织方面仍受到限制,大多数治疗方法要么需要局部给药,要么需要体外操作,从患者体内提取细胞,然后将其移植到患者体内。一个显著的例子是肝脏,可以过滤血液,被证明是选择性药物输送的有效靶点,在这种情况下,静脉注射,甚至是皮下注射,均可达到该效果。

“Just getting delivery at all to any tissue is difficult, when you really think about the challenge,” says Daniel Anderson, a chemical engineer at the Massachusetts Institute of Technology (MIT) in Cambridge. “Our bodies are designed to use the genetic information we have, not to accept newcomers.” But researchers are making steady progress in developing strategies that can help to shepherd these drugs to specific organ systems while sparing other, non-target tissues.

美国麻省理工学院化学工程师丹尼尔·安德森(Daniel Anderson)说:“靶向基因治疗存在很大的挑战性,仅是将药物输送至人体任何组织进了困难的,我们的身体是基因信息集合体,而不是接受新的基因信息。”目前研究人员在开发基因治疗方面正取得稳步进展,这些方案可以帮助引导药物进入特定器官系统,而不影响其他非靶向组织。

Adeno-associated viruses are the vehicle of choice for many gene-therapy efforts, and animal studies have shown that careful selection of the right virus combined with tissue-specific gene promoters can achieve efficient, organ-restricted delivery. Viruses are sometimes challenging to manufacture at scale, however, and can elicit immune responses that undermine efficacy or produce adverse events.

腺相关病毒是许多基因治疗工作的首选载体,相关动物研究表明,理性选择合适的病毒,结合组织特异性基因启动子,可以实现高效、器官靶向治疗。然而,相关病毒有时难以大规模生产,并潜在引起人体免疫反应,破坏疗效或者产生身体不良反应。

Lipid nanoparticles provide a non-viral alternative, and several studies published over the past few years highlight the potential to tune their specificity. For example, the selective organ targeting (SORT) approach developed by biochemist Daniel Siegwart and his colleagues at the University of Texas Southwestern Medical Center in Dallas, enables the rapid generation and screening of lipid nanoparticles to identify those that can effectively target cells in tissues such as the lung or spleen.

脂质纳米颗粒提供了一种非病毒的替代方法,之前研究人员发表的研究报告强调了脂质纳米颗粒具有组织特异性送递的潜力,例如:德克萨斯大学西南医学中心的生物化学家 Daniel Siegwart 及其同事开发的选择性器官靶向 (SORT) 方法能快速生成和筛选识别脂质纳米颗粒,使其有效在肺或脾等器官实现靶向治疗。

“That was one of the first papers that showed that if you do systematic screening of these lipid nanoparticles and start changing their compositions, you can skew the biodistribution,” says Roy van der Meel, a biomedical engineer at the Eindhoven University of Technology in the Netherlands.

荷兰埃因霍温理工大学生物医学工程师罗伊·范德米尔(Roy van der Meel)称:“目前首次研究表明,如果对这些脂质纳米颗粒进行系统筛选,并且改变它们的成分,就可以改变它们在生物体中的分布。”

Spatial multi-omics

空间多组学分析

The explosion in single-cell ’omics development means researchers can now routinely derive genetic, transcriptomic, epigenetic and proteomic insights from individual cells — sometimes simultaneously. But single-cell techniques also sacrifice crucial information by ripping these cells out of their native environments.

单细胞组学的迅速发展意味着研究人员可以常规地从单个细胞中获得遗传、转录、表观和蛋白质组学的见解,有时是同时获取,但是单细胞技术在将细胞从原生环境中剥离过程中,也失去了关键信息。

In 2016, researchers led by Joakim Lundeberg at the KTH Royal Institute of Technology in Stockholm devised a strategy to overcome this problem. The team prepared slides with barcoded oligonucleotides — short strands of RNA or DNA — that can capture messenger RNA from an intact tissue slice, such that each transcript could be assigned to a particular position in the sample according to its barcode. “No one really believed that we could pull out a transcriptome-wide analysis from a tissue section,” says Lundeberg. “But it turned out to be surprisingly easy.”

2016年,瑞士皇家理工学院乔基姆·伦德伯格(Joakim Lundeberg)设计了一种策略克服了该问题,他和同事使用条形码寡核苷酸(RNA或者DNA短链)制作载玻片,该载玻片能从完整的组织切片中捕获信使RNA,这样每个转录RNA可以依据条形码被分配至样本中的特定位置,他说:“无人相信我们能从组织切片中提取全转录RNA分析,但事实证明,该策略非常简单。”

The field of spatial transcriptomics has since exploded. Multiple commercial systems are now available, including the Visium Spatial Gene Expression platform from 10x Genomics, which builds on Lundeberg’s technology. Academic groups continue to develop innovative methods that can map gene expression with ever-increasing depth and spatial resolution.

此后空间转录组学技术倍受科学家青睐,目前已有多个商业系统进行应用,包括:10x Genomics公司推出的Visium空间基因表达平台,该平台系统基于伦德伯格的最新技术。随着学术团队不断开发创新的方法,将不断增加深度和空间分辨率来绘制基因表达。

Now researchers are layering further ’omic insights on top of their spatial maps. For example, biomedical engineer Rong Fan at Yale University in New Haven, Connecticut, developed a platform known as DBiT-seq, which employs a microfluidic system that can simultaneously generate barcodes for thousands of mRNA transcripts and hundreds of proteins labelled with oligonucleotide-tagged antibodies.

现在,研究人员正在他们的空间地图之上进一步分层“组学见解”。例如,康涅狄格州纽黑文耶鲁大学的生物医学工程师 Rong Fan 开发了一个名为 DBiT-seq 的平台,该平台采用了一种微流体系统,可以同时为数千个 mRNA 转录本和数百个用寡核苷酸标记的抗体标记的蛋白质生成条形码。

CRISPR-based diagnostics

基于CRISPR技术的诊断

The CRISPR–Cas system’s capacity for precise cleavage of specific nucleic acid sequences stems from its role as a bacterial ‘immune system’ against viral infection. This link inspired early adopters of the technology to contemplate the system’s applicability to viral diagnostics. “It just makes a lot of sense to use what they’re designed for in nature,” says Pardis Sabeti, a geneticist at the Broad Institute of MIT and Harvard in Cambridge. “You have billions of years of evolution on your side.”

CRISPR–Cas系统技术精确切割特定核酸序列的能力源于它作为细菌“免疫系统”对抗病毒感染的作用,这种关联性激发了早期采用该技术的科学家考虑它对病毒诊断的适用性。美国麻省理工学院布罗德研究所、哈佛大学剑桥分校遗传学家帕尔迪斯·萨贝提(Pardis Sabeti)说:“利用它们在自然界中设计的功能非常有意义,毕竟它们已演化了数十亿年。”

But not all Cas enzymes are created equal. Cas9 is the go-to enzyme for CRISPR-based genome manipulation, but much of the work in CRISPR-based diagnostics has employed the family of RNA-targeting molecules known as Cas13, first identified in 2016 by molecular biologist Feng Zhang and his team at the Broad. “Cas13 uses its RNA guide to recognize an RNA target by base-pairing, and activates a ribonuclease activity that can be harnessed as a diagnostic tool by using a reporter RNA,” explains Jennifer Doudna at the University of California, Berkeley, who shared the 2020 Nobel Prize in Chemistry with Emmanuelle Charpentier, now at the Max Planck Unit for the Science of Pathogens in Berlin, for developing the genome-editing capabilities of CRISPR–Cas9. This is because Cas13 doesn’t just cut the RNA targeted by the guide RNA, it also performs ‘collateral cleavage’ on any other nearby RNA molecules. Many Cas13-based diagnostics use a reporter RNA that tethers a fluorescent tag to a quencher molecule that inhibits that fluorescence. When Cas13 is activated after recognizing viral RNA, it cuts the reporter and releases the fluorescent tag from the quencher, generating a detectable signal. Some viruses leave a strong enough signature that detection can be achieved without amplification, simplifying point-of-care diagnostics. For example, last January, Doudna and Melanie Ott at the Gladstone Institute of Virology in San Francisco, California, demonstrated a rapid, nasal-swab-based CRISPR–Cas13 test for amplification-free detection of SARS-CoV-2 using a mobile phone camera.

但并不是所有Cas酶都是一样的,Cas9是基于CRISPR的基因组操作的首选酶,但基于CRISPR的诊断的大部分工作都使用了被称为Cas13的RNA靶向分子家族,该分子家族是2016年由分子生物学家张峰(音译)首次发现的。美国加州大学伯克利分校詹妮弗·杜德纳(Jennifer Doudna)解释称:“Cas13利用其RNA向导通过碱基对识别RNA靶标,并激活核糖核酸酶活性,该活性通过使用报告RNA作为诊断工作进行临床应用。”据悉,她与马克斯·普朗克病原体科学研究所艾曼纽·卡彭特(Emmanuelle Charpentier)因这项研究发现共同获得2020年诺贝尔化学奖。这是因为Cas13不仅会切割向导RNA靶向的RNA,还会对附近任何其他RNA分子进行“旁系切割”。许多基于Cas13的诊断使用报告RNA,使用荧光标记抑制荧光的淬灭分子,当Cas13识别病毒RNA后被激活时,它会切断报告RNA,并从淬灭分子中释放荧光标记,产生可检测信号。有些病毒留下足够强的信号,可以在不进行扩增的情况下进行检测,从而简化了即时诊断。例如:2021年1月,美国加州旧金山格莱斯顿病毒学研究所演示了一种基于鼻拭子的CRISPR-Cas13快速检测方法,可以使用手机摄像头对新冠病毒进行无扩增检测。

RNA-amplification procedures can boost sensitivity for trace viral sequences, and Sabeti and her colleagues have developed a microfluidic system that screens for multiple pathogens in parallel using amplified genetic material from just a few microlitres of sample. “Right now, we have an assay to do 21 viruses simultaneously for less than US$10 a sample,” she says. Sabeti and her colleagues have developed tools for CRISPR-based detection of more than 169 human viruses at once, she adds.

RNA扩增可以提高对微量病毒序列的灵敏度,萨贝提和她的同事现已开发一种微流体系统,仅利用几微升样本中扩增出的基因物质,就能同时筛选多种病原体。“现在,我们已掌握一种同时检测21种病毒的方法,而每个样本的成本不足10美元。”她说。萨贝提还补充说,她和同事还开发出基于CRISPR技术的工具,可以同时检测169种以上的人类病毒。

Other Cas enzymes could flesh out the diagnostic toolbox, Doudna notes, including the Cas12 proteins, which exhibit similar properties to Cas13 but target DNA rather than RNA. Collectively, these could detect a broader range of pathogens, or even enable efficient diagnosis of other non-infectious diseases.

杜德纳称,其他Cas酶可以充实诊断工具箱,包括Cas12蛋白,它表现出与Cas13相似的特性,但其目标是DNA而不是RNA。总体而言,这些技术可以检测范围更广的病原体,甚至可以有效诊断其他非传染性疾病。

下月起,你爱吃的这些食品要涨价了?!看完清单想哭******

原标题:下月起,你爱吃的这些食品要涨价了?!看完清单想哭

近日,网络流传一份

百事食品从5月1日起

上调膨化类产品价格的通知

亲们最爱的百事薯片

5月1日起要涨价了?!

此消息一出

甚至上了微博热搜

众所周知

该公司旗下的膨化食品品牌

包括乐事薯片、奇多粟米脆

这是否意味着

这些很多人爱吃的零食

下个月开始真的要涨价了?

乐事薯片。图据百事公司官网

面对原料价格的上涨,食品快消公司正在试图掀起新一轮涨价,以转嫁成本。

近日,一则疑似由百事食品(中国)有限公司发布的价格调整通知函在网络流传,通知函称:由于近年来包装材料及人工成本不同程度的上涨,产品全线面临巨大的成本压力,尽管经多方努力来克服成本上涨带来的压力,但仍然无法避免以价格上调来维持过去的品牌和市场服务。

对此,百事公司中国区给记者的回应是,“我们不能置评有关我司或市场上其它公司产品的价格问询”。

网传百事涨价涉及多个膨化食品

网传的价格调整通知函显示,百事公司这一函件意在告知其企业客户,并希望其提价举措等得到企业客户的理解。

“经过相关市场调研,根据消费者的反馈,经慎重考虑,我司决定从2019年5月1日起,上调公司膨化类产品的价格。百事公司在函件中如是陈述。

据悉,百事公司旗下的主要食品品牌和产品包括,乐事薯片、奇多粟米脆系列、多力多滋、桂格燕麦系列,其中乐事和奇多的产品多为膨化食品。

奇多系列产品。图据百事公司官网

百事旗下的膨化类产品

是否涨价要等5月见分晓

然而,就在2018年

食品行业已实施过一轮涨价

快消品步入提价周期已经超1年

记者发现,涉及食品行业的这一波涨价始于2018年初,随着多种原料价格的上涨,啤酒果汁、茶饮、方便面、咖啡、榨菜等都有品牌宣布涨价。

华润雪花

由于人工、运输费用等经营成本增加,华润雪花宣布,自2018年1月1日起对部分产品价格进行上调。

青岛啤酒

青岛啤酒也曾发布通告:由于原材料价格上涨、人工成本、运输费用增加、环保税开证等原因,生产成本增加。为了确保为您继续提供高品质的产品,自2018年1月1日起,我司对部分产品价格及费用进行调整。

离上一次提价还不满半年,青岛啤酒在2018年5月20日对部分青岛优质啤酒进行提价,单款单箱全国提价2元。

康师傅

2018年1月,康师傅控股发布提价函。该提价函显示,康师傅控股预计从2018年1月10日开始执行新的价盘,康饮茶/果汁系列提价2-3元。随后市场中出现了《统一乳饮产品终端零售客户告知函》,该函件显示,统一将从1月23日起,对冰红茶、冰绿茶、冰糖雪梨、鲜橙多等产品每箱提价1-3元,单瓶提价0.5元。也是在2018年1月,方便面也实现了提价。当时有报道称,康师傅袋面每箱涨价2元,桶面每箱涨了1元,统一方便面的出厂价则每箱上调1元。

洽洽

洽洽食品公司则于2018年6月底对每日坚果产品提价,平均提价幅度约为8%;2018年7月18日其又对老品瓜子提价,提价区间为6-14.5%。

涪陵榨菜

2018年11月1日晚间,榨菜头部企业宣布也要涨价。涪陵榨菜发布公告称,为统一全国流通产品价格体系,防止窜货,保护渠道各成员利益,公司决定上调7个单品的产品到岸价格,提价幅度约10%。且价格执行于2018年10月29日12:00开始实施。

星巴克

同年11月6日起,星巴克中国对部分饮品的价格小幅上调。例如大杯(Grande杯型)美式咖啡的价格从27元上调至28元,中杯(Tall杯型)拿铁咖啡的费用也从过去的28元变成了29元。

元祖食品

而此次百事宣布提价前,元祖食品已在今年4月1日开始蛋糕全线提价,幅度在10%以上,水果礼盒从168元提价至188元。提价原因一是去年奶油、包装、人工成本上涨。

提价行动会否继续?

在外界看来,原料价格、运输成本及人工成本持续增长,是食品企业调价的主要原因。

据悉,近两年来,白糖、包装纸等包装食品的原料都以两位数增长。光是糖这一项,近期国内糖市的现货价格普遍走高。此外,包装纸等包材涨价,也一度是去年快消食品企业提价的理由之一。

统计数据显示,2018年中国箱板纸瓦楞纸总产量约4688.9万吨,同比下降5.08%,白纸板(白卡+白板纸)产量1627.3万吨,同比下降7%。这是近10多年来包装纸产业首次出现负增长。不过,记者发现,目前包装纸价格市场相对平稳,玖龙、理文及博汇等纸企尚未有涨价动作。

对于今年是否还会提价,康师傅中国区回复称,今年以来没有提价的消息,公司产品提价主要是在去年。

面对此次网传百事涨价,统一企业相关负责人给到记者的回应则称,统一企业不打价格战,将坚持价值营销。

另外,好丽友18日晚间给到记者的回复也是没有涨价计划

网友说

吃货们看到消息后表示要哭,也有人则看到了减肥的曙光……

@黄轩的达令啊啊啊,可不可以不要啊

@稻草儿姑娘:哦天呐我的奇多!!

@一见公子误终生:乐事难道还不够贵呢???

@白茶桃桃w一包350g要我八块还不贵呢,八块买了半包空气

@十二八九_前两天去711买了包多力多滋花了30...

@南有边城:那我就不吃了正好减肥

@Magi的明天:趁现在还没涨价,多囤点

@Hey向前走别回头喜欢吃乐事的薯片,特别是黄瓜味的,涨价了就少吃点吧

@LoveMuses_草莓酱这回真的能痛下决心抛弃膨化食品减肥了

@一墨落一:有本事让我再也吃不起!。。。求你们了,我不想更胖了

@gaga丶monster好吧,去吃好丽友了。。

@今天也是chanbaek女孩可以别的多涨点,原味给我留着不动吗

来源:南方都市报(nddaily)

编辑:刘晓霞 校对:张颖

据记者4月18日从中国裁判文书网公布的一审刑事判决书中获悉,本山传媒有限公司演员赵丹(艺名:胖丫)因犯生产、销售假药罪被判处有期徒刑3年。同时,本山传媒有限公司演员郭静也因生产、销售假药罪,被判处有期徒刑1年。

网图

真的要涨吗,可以少吃点了

感觉终于可以借机减肥的戳下小花!

【财富彩票-官网👉👉十年信誉大平台,点击进入👉👉 打造国内最专业最具信赖的彩票平台,为您提供财富彩票-官网用户登录全网最精准计划软件,APP下载登陆,强大的竞彩网上推荐!!】

Japan aims to put a person on the moon by late 2020s******

Japan revised the schedule of its space exploration plans yesterday, aiming to put a Japanese person on the moon by the latter half of the 2020s.。

"Not only is space a frontier that gives people hopes and dreams but it also provides a crucial foundation to our economic society with respect to our economic security," said Prime Minister Fumio Kishida.。

According to the draft schedule of the plan, Japan aims to put the first non-American on the moon as part of the Artemis program, a US-led initiative that aims to return astronauts to the moon.。

China also aims to become a major spacefaring power by 2030, and it too plans to put astronauts on the moon, raising the prospect of an Asian space race.。

In May, China became the second country to put a rover on Mars, two years after landing the first spacecraft on the far side of the moon.。

The plan also spells out Japan's aspirations to launch a probe to explore Mars in 2024, as well as to find ways to generate solar electricity in space.。

Japan's announcement of its space exploration targets comes a week after Japanese billionaire Yusaku Maezawa returned to earth after spending 12 days aboard the International Space Station, becoming the first space tourist to travel to the ISS in more than a decade.。

Russia's delegation arrives for second round of talks with Ukraine******

AFP

Russian presidential aide and head of the Russian delegation Vladimir Medinsky (third right), accompanied by the Russian ambassador to Belarus Boris Gryzlov (fourth right) and Leonid Slutsky (right), the head of the Russian parliament's international affairs committee, speaks to the media ahead of expected talks with Ukrainian negotiators in Belarus' Brest region on March 2, 2022.

The Russian delegation has arrived at the site where the second round of talks between Russia and Ukraine are expected to take place, Russian presidential aide Vladimir Medinsky, head of the Russian delegation, said on Wednesday.

The Ukrainian side is expected to arrive tomorrow morning, and both sides are expected to meet in Belovezhskaya Pushcha on the Belarus-Poland border, Russia's RIA Novosti news agency reported, citing the official.

Medinsky said Russia and Ukraine agreed upon the location for the second round of talks together, adding that Russia's military has established a safe corridor to allow the Ukrainian delegation to move through Ukrainian territory.

The possibility of a ceasefire would be discussed during the talks, among other things, according to Medinsky.

Russia and Ukraine concluded their first round of negotiations in Belarus on Monday with no clear breakthrough.

“死守阵地,决不能后退一寸”——记抗美援朝老兵黄忠茂

1.春暖花开!重庆“开往春天的列车”发车了

2.洗米华案一审开庭,35名手下全部认罪

3.男子将保险柜伪装成垃圾放垃圾桶旁边 24万现金被捡走

4.输光底裤的曼联,应该炒掉滕哈赫吗?

© 1996 - 财富彩票-官网 版权所有 xxxxx

地址:

电话:(总机)

编辑部邮箱:

乐喜彩票_首页-彩神快三-首页-购彩大厅_首页-一分彩-官网-彩神8争霸 - 彩神8争霸下载-360彩票网_360彩票网平台-官网-众购彩票_购彩大厅-网购彩票-官网-快三正规app下载-[安全购彩平台]-优彩彩票-首页-手机快三app下载-官网-彩宝贝_彩宝贝APP_彩宝贝官网-猎财彩票App下载_官方版APP-爱彩乐-官网-彩神v在线登录 - 登录-巴特彩票 - 官方网页版
美女把客厅爆改成影院 再也不用费钱出去看电影| 西甲首轮-皇马vs阿尔梅里亚首发:卡马文加&琼阿梅尼&吕迪格出战| 英国首相候选人苏纳克称将"震慑中国" 中方回击| 日本航空8月20日起恢复上海至成田客运航班| 敏感时期联手美国在中印边境高调搞军演 印度心机暴露| 敏感时期联手美国在中印边境高调搞军演 印度心机暴露| 摸鱼有理:大脑一思考就在积累毒素,必须休息才能清除| 黑色市场夏日“续命”:钢铁行业能否走出亏损?| 四川彭州山洪灾害已致7人死亡 当地曾发通报预警| 中疾控:我国尚未发现猴痘相关病例| 跳槽就赔100万,竞业协议到底多坑| 我国国防法修订 明年1月1日起施行| 欢呼声响起!贾诚空切篮下接侯沛佐长传双手暴扣得分| 长期饮料当水喝引发尿毒症?专家辟谣!| 上了年纪后忙着变美 才能忘记变老| 美国校园枪案细节还原:8次求救电话警察迟迟不行动,学生靠装死逃生……| " width="600" height="200">| 深圳时隔14年惊现“0首付”楼盘 实为提供免息贷款|